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respectively; we have assumed that the back-reaction is un­
important, and [NE] > [V(NE)2]. 

The longest transient can be ascribed to further reactions 
of the quinone products of the redox reaction. These reactions 
include semiquinone quenching, oxidative addition of hy­
droxide to the quinone, and other processes.8 

Reversal of the vanadate inhibition of (Na.K)-ATPase is 
accomplished by norepinephrine and other catecholamines 
through complexation and reduction of vanadate. These 
compounds are more effective in removing free vanadate than 
other chelators (e.g., EDTA) under physiological conditions 
because they do not readily form competing complexes with 
Mg2+ and Ca2+.9 Thus, the model presented here is consistent 
with the data, and explains several other related observa­
tions. 
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Correlated Rotation of terf-Butyl Groups 
in Tri-rert-butylsilane 

S(V.-

In crowded systems, the correlated (coupled) rotation of two 
or more alkyl groups may become energetically more feasible 
than the independent rotation of a single group.1 In view of 
current interest in "gearing" or "cogging" effects of alkyl 
groups,2-"5 we now wish to report evidence based on empirical 
force field (EFF) calculations6 and DNMR studies that the 
rotation of the tert-buty\ groups in tri-ferf-butylsilane (1) is 
correlated. 

According to full relaxation EFF calculations, the ground 
state of 1 has C 3 symmetry, with torsional angles (<t> = Cm-
Cq-Si-H)8 of 43°.9 To study dynamic processes in 1, we re­
sorted to incremental group driving calculations.14 Using this 
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Figure 1. Two torsional pathways for /-BU3S1H (see text). The view down 
the Cq-Si bond axis from Cq to Si is shown for each of the three tert-bu\y\ 
groups (A, B, and C, as denoted by the column heading). One methyl in 
each re/7-butyl group is marked with a star to provide a point of reference. 
Solid arrows indicate the direction in which group A is driven; hollow ar­
rows indicate the overall direction of rotation induced in the other two 
groups. 

method, strain energies of 1 were calculated6 with one Cm-
Cq-Si-H torsional angle frozen at successively increasing or 
decreasing values,15 while all other internal parameters were 
allowed full relaxation. When one tert-butyl group of 1 was 
driven through a staggered (S) conformation, a barrier of 5.1 
kcal/mol was surmounted as the other two (unfrozen) tert-
butyl groups responded by rotating through staggered con­
formations, resulting in overall enantiomerization by the SSS 
pathway (Figure 1). When the terr-butyl group was driven 
through the eclipsed (E) conformation, the other two groups 
again responded by rotating through staggered conformations 
(ESS, Figure 1), with a calculated barrier of 6.8 kcal/mol. 
These two'processes represent correlated rotations, in the 
following sense. 

The possible torsional pathways which effect topomerization 
or enantiomerization can be delineated by means of group 
theoretic techniques.16 Considering only rotations about the 
J-Bu-Si bonds,17 the C3 point group partitions the nonrigid 
molecular symmetry group of feasible rearrangements18 (Gi 62 
= (C3)3 A Ci0) into sixteen distinct rearrangement modes; ten 
enantiomerizations (two of which are represented by the SSS 
and ESS processes), five topomerizations, and the identity 
mode. We consider rotation to be correlated if, and only if, a 
single-step process leads to permutational rearrangement (site 
exchange) of the methyl groups in more than one of the three 
fer?-butyl groups. It follows that all enantiomerizations, in­
cluding the two processes depicted in Figure 1, involve corre­
lated rotations. 

In the threshold (SSS) mechanism, all three tert-butyl 
groups undergo net conrotation (see Figure 1). Two of the three 
diastereotopic methyl sites are thus rendered equivalent (i.e., 
the average symmetry is Civ, with the unique methyl group 
anti to Si-H). In the ESS mechanism, two of the three pairwise 
interactions between ferf-butyl groups involve net disrotation; 
the third interaction involves net conrotation. By this mecha­
nism, all three methyl sites are equivalenced by successive 
rearrangements in which a given terf-butyl group passes 
through 5 and E conformations, e.g., by a succession of the 
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mode-equivalent ESS, SES, and SSE processes. 
To confirm the magnitude of the calculated barriers, we 

recorded the temperature dependent 25.2 MHz 13C J1H) NMR 
spectra19 of I20 in 4:1 CF2Cl2/CF3Br. At -140 0C the singlet 
due to the methyl carbons (5Me4Si 31.0 ppm at -70 0C) splits 
into two singlets in a ratio of ~2:1 (8 32.3 and 26.4 ppm at 
-157 0C, respectively). The corresponding value of AG0

+, 6.1 
±0.3 kcal/mol,21 is in good agreement with the barrier of 6.8 
kcal/mol calculated by the EFF method.23 The observation 
of two resonance signals is in accord with our calculations 
which indicate that the (nonobserved) threshold mechanism 
(SSS) for this compound averages two of the three methyl 
environments at lower temperatures.24 

The above analysis may be extended to any system of the 
type /-BujMX. Thus, besides the obvious analogies to other 
silanes,25 the observed coalescences in tri-fer/-butylphos-
phines26 might similarly be explained by a process involving 
correlated rotation.27 

Further discussion is reserved for the detailed account of this 
work. 
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Chemically Modified Electrodes. 11. 
Predictability of Formal Potentials of Covalently 
Immobilized Charge-Transfer Reagents 

Sir: 

This research in covalent anchoring of redox reagents' to 
electrode surfaces' examines the correspondence between 
electrochemical properties of an immobilized reagent and its 
solution analogue. Good correspondence is desired for pre­
dictive design of electrocatalytic systems.lb'2 

Predictability of the electrochemical step I and the chemical 
step II can be scrutinized separately. While developing a di­
verse chemistry useful for covalently immobilizing OX/RED 
couples, we have measured a sufficiently extensive series of 
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